Title Thermal limits and adaptation in marine Antarctic ectotherms; an integrative view
Author Pörtner, H.O.; Peck, L.; Somero, G.
Author Affil Pörtner, H.O., Alfred-Wegener- Institut für Polar- und Meeresforschung, Physiologie mariner Tiere, Bremerhaven, Federal Republic of Germany. Other: British Antarctic Survey, United Kingdom; British Antarctic Survey, United Kingdom; Stanford University
Source Antarctic ecology; from genes to ecosystems; Part 2, Evolution, diversity and function, edited by A.D. Rogers, E.J. Murphy, A. Clarke and N.M. Johnston. Philosophical Transactions - Royal Society of London. Biological Sciences, 362(1488), p.2333-2258, . Publisher: Royal Society of London, London, United Kingdom. ISSN: 0962-8436. ISBN: 978-0- 85403-654-7
Publication Date Dec. 29, 2007
Notes In English. NSF Grant IBN-0133184. 190 refs. Ant. Acc. No: 83930. CRREL Acc. No: 62004356
Index Terms climatic change; cold tolerance; ecology; ocean environments; temperature; Antarctica; Southern Ocean; biochemistry; biologic evolution; Chordata; climate change; cold adaptation; International Polar Year 2007-08; IPY 2007-08 Research Publications; marine environment; metabolism; molecular biology; physiology; Pisces; Vertebrata
Abstract A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and Rcat) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life- history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.
URL http://hdl.handle.net/10.1098/rstb.2006.1947
Publication Type journal article
Record ID 283961