Title Species diversity and distributions of pelagic calanoid copepods from the Southern Ocean
Author Park, E.T.; Ferrari, F.D.
Author Affil Park, E.T., Texas A&M University, College Station, TX. Other: National Museum of Natural History
Source p.143-179, ; Smithsonian at the poles, Washington, DC, May 3-4, 2007, edited by I. Krupnik, M.A. Lang and S.E. Miller. Publisher: Smithsonian Institution Scholarly Press, Washington, DC, United States. ISBN: 978-0-9788460-1-50-9788460-1- X
Publication Date 2009
Notes In English. Includes appendix. 152 refs. Ant. Acc. No: 86086
Index Terms Southern Ocean; Arthropoda; biogeography; Copepoda; Crustacea; ecology; International Polar Year 2007-08; Invertebrata; IPY 2007-08 Research Publications; Mandibulata; pelagic environment; species diversity; subantarctic regions
Abstract In the Southern Ocean, 205 species of pelagic calanoid copepods have been reported from 57 genera and 21 families. Eight species are found in the coastal zone; 13 are epipelagic, and 184 are restricted to deepwater. All 8 coastal species and eight of 13 epipelagic species are endemic, with epipelagic species restricted to one water mass. Of the 184 deepwater species, 50 are endemic, and 24 occur south of the Antarctic Convergence. Most of the remaining 134 deepwater species are found throughout the oceans with 86% percent reported as far as the north temperate region. The deepwater genus Paraeuchaeta has the largest number of species in the Southern Ocean, 21; all are carnivores. Scolecithricella is also speciose with 16 species, and more specimens of these detritivores were collected. Species with a bipolar distribution are not as common as bipolar species pairs. A bipolar distribution may result from continuous extinction in middle and low latitudes of a wide spread deepwater species with shallow polar populations. Subsequent morphological divergence results in a bipolar species pair. Most of the numerically abundant calanoids in the Southern Ocean are endemics. Their closest relative usually is a rare species found in oligotrophic habitats throughout the oceans. Abundant endemics appear adapted to high primary and secondary productivity of the Southern Ocean. Pelagic endemicity may have resulted from splitting a widespread, oligotrophic species into a Southern Ocean population adapted to productive habitats, and a population, associated with low productivity that remains rare. The families Euchaetidae and Heterorhabdidae have a greater number of their endemic species in the Southern Ocean. A phylogeny of these families suggests that independent colonization by species from different genera was common. Thus, two building blocks for the evolution of the Southern Ocean pelagic fauna are independent colonization and adaptation to high productivity.
URL http://hdl.handle.net/10088/6820
Publication Type monograph
Record ID 292171