Title Overview of mercury measurements in the Antarctic troposphere
Author Dommergue, A.; Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Brooks, S.; Courteaud, J.; Ferrari, C.P.
Author Affil Dommergue, A., CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement, Saint Martin d'Heres, France. Other: CNR, Institute on Atmospheric Pollution Research, Italy; GKSS Forschungszentrm in der Helmholtz- Gemeinschaft, Germany; NOAA, Air Resources Laboratory
Source Atmospheric Chemistry and Physics, 10(7), p.3309-3319, . Publisher: Copernicus, Katlenburg-Lindau, International. ISSN: 1680- 7316
Publication Date 2010
Notes In English. Part of special issue no. 189, Chemistry, Emission, and Transport of Atmospheric Mercury (CETAM), edited by Ebinghaus, R., Pirrone, N., and Kim, K.-H., http://www.atmos-chem- phys.net/special_issue189.html; published in Atmospheric Chemistry and Physics Discussions: 11 December 2009, http://www.atmos-chem- phys.net/10/issue7.html; accessed in May, 2011. 55 refs. Ant. Acc. No: 91593. GeoRef Acc. No: 310440
Index Terms ecosystems; human activity; ice; metals; photochemical reactions; polar regions; pollution; snow; Antarctica--Lake Vanda; Antarctica--McMurdo Station; polar regions; Antarctica--South Pole; Southern Ocean; Antarctica--Terra Nova Bay; air pollution; Antarctica; atmospheric transport; biochemistry; bromine; chemical reactions; chlorine; halogens; iodine; Lake Vanda; McMurdo dry valleys; McMurdo Station; mercury; photochemistry; pollutants; rates; Ross Island; Scott Base; South Pole; Terra Nova Bay; toxicity; transport; troposphere; Victoria Land; Wright Valley
Abstract Polar ecosystems are considered to be the last pristine environments of the earth relatively uninfluenced by human activities. Antarctica in particular, compared to the Arctic is considered to be even less affected by any kind of anthropogenic influences. Once contaminants reach the Polar Regions, their lifetime in the troposphere depends on local removal processes. Atmospheric mercury, in particular, has unique characteristics that include long-range transport to Polar Regions and the transformation to more toxic and water-soluble compounds that may potentially become bioavailable. These chemical-physical properties have placed mercury on the priority list of an increasing number of International, European and National conventions, and agreements, aimed at the protection of the ecosystems including human health (i.e. GEO, UNEP, AMAP, UN-ECE, HELCOM, OSPAR). This interest, in turn, stimulates a significant amount of research including measurements of gaseous elemental mercury reaction rate constant with atmospheric oxidants, experimental and modelling studies in order to understand the cycling of mercury in Polar Regions, and its impact to these ecosystems. Special attention in terms of contamination of Polar Regions is paid to the consequences of the springtime phenomena, referred to as "Atmospheric Mercury Depletion Events" (AMDEs), during which elemental mercury through a series of photochemically- initiated reactions involving halogens, may be converted to a reactive form that may accumulate in polar coastal, or sea ice, ecosystems. The discovery of the AMDEs, first noted in the Arctic, has also been observed at both poles and was initially considered to result in an important net input of atmospheric mercury into the polar surfaces. However, recent studies point out that complex processes take place after deposition that may result in less significant net- inputs from the atmosphere since a fraction, sometimes significant, of deposited mercury may be recycled. Therefore, the contribution of this unique reactivity occurring in polar atmospheres to the global budget of atmospheric mercury, and the role played by snow and ice surfaces of these regions, are important issues. This paper presents a review of atmospheric mercury studies conducted in the Antarctic troposphere, both at coastal locations and on the Antarctic Plateau since 1985. Our current understanding of atmospheric reactivity in this region is also presented.
URL http://www.atmos-chem-phys.net/10/3309/2010/acp-10-3309-2010.pdf
Publication Type journal article
Record ID 65007157